Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(32): 13402-13410, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37540039

RESUMEN

Magnetic anisotropy plays a vital role in stabilizing the long-range magnetic order of two-dimensional ferromagnetic systems. In this work, using the first-principles method, we systematically explored the triaxial magnetic anisotropic properties of a ferromagnetic semiconductor CrSBr monolayer, which is recently exfoliated from its bulk. Further analysis shows that the triaxial magnetic anisotropic properties originate from the coexistence of the magnetic dipole-dipole interaction (shape anisotropy) and the spin-orbit coupling interaction (magnetocrystalline anisotropy). Interestingly, the shape anisotropy, which has been neglected in most previous works, dominates over the magnetocrystalline anisotropy. Besides, the experimental Curie temperature of the CrSBr monolayer is well reproduced using Monte Carlo simulations. What is more, the easy magnetic axes and ferromagnetism in the CrSBr monolayer can be manipulated by strains and are relatively more susceptible to the uniaxial strain in the x direction. Our study not only explains the mechanism of triaxial magnetic anisotropy of the CrSBr monolayer, but also sheds light on how to tune the magnetic anisotropy and Curie temperature in ferromagnetic monolayers.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36749154

RESUMEN

The existence of Ag2Te has always been an obstacle for p-type thermoelectric material AgSbTe2 to improve its thermoelectric performance. In this work, AgSb1-xMgxTe2 samples are synthesized by melting-slow-cooling and then spark plasma sintering (SPS). Through increasing the solubility of Ag2Te in the AgSbTe2 matrix by Mg doping, the formation of Ag2Te is inhibited. Density functional theory calculations confirm more valence bands are involved in electrical transport due to Mg doping. Therefore, the electrical conductivity of AgSb1-xMgxTe2 samples has been greatly improved due to the reduction of Ag2Te with n-type electrical conductivity. Moreover, the downward trend of ZT, which is caused by the structural transition of Ag2Te at about 418 K, disappears. Meanwhile, lattice defects form in the AgSb0.98Mg0.02Te2 sample, and Mg doping improves the configurational entropy change, resulting in a decrease in lattice thermal conductivity over the entire temperature range of measurement. Finally, a high ZT value of 1.31 at 523 K is achieved for the AgSb0.98Mg0.02Te2 sample. This study demonstrates that Mg doping can effectively improve AgSbTe2 thermoelectric performance by inhibiting the formation of the Ag2Te impurity phase.

3.
Nanoscale ; 13(45): 19172-19180, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34781325

RESUMEN

Low-dimensional ferroelectricity and Dirac materials with protected band crossings are fascinating research subjects. Based on first-principles calculations, we predict the coexistence of spontaneous in-plane polarization and novel 2D emergent fermions in dynamically stable quadruple-layer (QL) XSbO2 (X = Li, Na). Depending on the different polarization configurations, QL-XSbO2 can exhibit unconventional inner-QL ferroelectricity and antiferroelectricity. Both ground states harbor robust ferroelectricity with enhanced spontaneous polarization of 0.56 nC m-1 and 0.39 nC m-1 for QL-LiSbO2 and QL-NaSbO2, respectively. Interestingly, the QL-LiSbO2 possesses two other metastable ferroelectric (FE) phases. The ground FE phase can be flexibly driven into one of the two metastable FE phases and then into the antiferroelectric (AFE) phase. During this phase transition, several types of 2D fermions emerge, for instance, hourglass hybrid and type-II Weyl loops in the ground FE phase, type-II Weyl fermionsin the metastable FE phase, and type-II Dirac fermions in the AFE phase. These 2D fermions are robust under spin-orbit coupling. Notably, two of these fermions, e.g., an hourglass hybrid or type-II Weyl loop, have not been observed before. Our findings identify QL-XSbO2 as a unique platform for studying 2D ferroelectricity relating to 2D emergent fermions.

4.
Nanotechnology ; 32(30)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857932

RESUMEN

Afterγ-ray irradiation treatment, a monolayer tungsten diselenide could be transitioned into an n-doped semiconductor due to the anion vacancies created by the radiation. Transmission electron microscope studies showed clear chemical modulation with atomically sharp interface. Change in the lattice vibrational modes induced by passivation of oxygen is captured by Raman spectroscopy. The frequency shifts in both in-plane and out-of-plane modes are dependent linearly on the oxidation content. We observe a negative trion, which is a neutral exciton bound with an electron, in the photoluminescence spectra. The binding energy of this trion is estimated to be ∼90 meV, making it a tightly bound exciton. The first-principles calculation suggests that an increase in the anion vacancy population is generally accompanied by a transition from a direct gap material to an indirect one. This opens up a new venue to engineer the electronic properties of transition metal dichalcogenides by using irradiation.

5.
RSC Adv ; 11(36): 22088-22094, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35480799

RESUMEN

Distinguishing from traditional working environments, we propose the harsh gamma radiation method to study the stability and reliability of the emerging two-dimensional (2D) quantum material tungsten diselenide (WSe2). Transmission electron microscopy studies showed clear chemical modulation with an atomically sharp interface, indicating that the selenium vacancy content increased with the irradiation dose. The WSe2 crystal could be transitioned into an n-doped semiconductor due to the anion vacancies created by radiation. Changes in the lattice vibrational modes induced by the passivation of oxygen was captured via Raman spectroscopy. The frequency shifts in both in-plane and out-of-plane modes are dependent linearly on the selenium vacancy content. The friction of WSe2 increases with the irradiation dose. Electrostatic properties were investigated by measuring the surface potential via Kelvin probe force microscopy. Due to different environments, molecular collisions lead to an increase in the concentration of vacancy defects, which made our results different from those previously reported. The first principles calculation suggests that an increase in the selenium vacancy population is generally accompanied by a transition from a direct gap material to an indirect one. This opens up a new venue to engineer the optical, frictional and electronic properties of transition metal dichalcogenides using irradiation.

6.
Nat Commun ; 11(1): 5930, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230183

RESUMEN

Atom-thick van der Waals heterostructures with nontrivial physical properties tunable via the magnetoelectric coupling effect are highly desirable for the future advance of multiferroic devices. In this work on LaCl/In2Se3 heterostructure consisting of a 2D ferromagnetic layer and a 2D ferroelectric layer, reversible switch of the easy axis and the Curie temperature of the magnetic LaCl layer has been enabled by switching of ferroelectric polarization in In2Se3. More importantly, magnetic skyrmions in the bimerons form have been discovered in the LaCl/In2Se3 heterostructure and can be driven by an electric current. The creation and annihilation of bimerons in LaCl magnetic nanodisks were achieved by polarization switching. It thus proves to be a feasible approach to achieve purely electric control of skyrmions in 2D van der Waals heterostructures. Such nonvolatile and tunable magnetic skyrmions are promising candidates for information carriers in future data storage and logic devices operated under small electrical currents.

7.
Phys Chem Chem Phys ; 22(40): 23185-23194, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33026374

RESUMEN

The Heusler alloys CoFeRGa (R = Ti, V, Cr, Mn, Cu, and Nb) have similar chemical compositions, but exhibit remarkably distinct electronic structures, magnetism and transport properties. These structures cover an extensive range of spin gapless semiconductors, half-metals, semiconductors and metals with either ferromagnetic, ferrimagnetic, antiferromagnetic, or nonmagnetic states. The Heusler alloys have three types of structures, namely, type-I, type-II, and type-III. By means of first-principles calculation combined with the Boltzmann equation within the consideration of spin-freedom, we explore the transport feature of the most stable structure (type-I). In addition, we provide evidence that all the considered materials are mechanically and dynamically stable, possessing high strength and toughness to resist compression and tensile strain. Moreover, the distinct electronic (metallic, insulating, and half-metallic) properties and magnetic behaviors originate mainly from a cooperative electron transfer and electronic structures have been verified by our calculation. Finally, we found that the tunable electronic structure with varied atomic numbers has significant influence on the spin-Seebeck effect. Correspondingly, the calculated spin-Seebeck coefficient of CoFeCrGa is -60.29 µV K-1 at 300 K, which is larger than that of other quaternary Heusler compounds. Our results provide a band-engineering platform to design Heusler structures with different electronic behaviors in isomorphic compounds, which provide the way for accelerating the pre-screening of materials to advance and for using the quaternary Heusler compounds for potential applications in spin caloritronic devices.

8.
J Adv Res ; 24: 371-377, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32477607

RESUMEN

The perovskite oxide interface has attracted extensive attention as a platform for achieving strong coupling between ferroelectricity and magnetism. In this work, robust control of magnetoelectric (ME) coupling in the BiFeO3/BaTiO3 (BFO/BTO) heterostructure (HS) was revealed by using the first-principles calculation. Switching of the ferroelectric polarization of BTO induce large ME effect with significant changes on the magnetic ordering and easy magnetization axis, making up for the weak ME coupling effect of single-phase multiferroic BFO. In addition, the Dzyaloshinskii-Moriya interaction (DMI) and the exchange coupling constants J for the BFO part of the HSs are simultaneously manipulated by the ferroelectric polarization, especially the DMI at the interface is significantly enhanced, which is three or four times larger than that of the individual BFO bulk. This work paves the way for designing new nanomagnetic devices based on the substantial interfacial ME effect.

9.
RSC Adv ; 10(48): 28501-28508, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35520033

RESUMEN

We investigate the transport properties of bulk Ca2YZ (Y = Au, Hg; Z = As, Sb, Bi, Sn and Pb) by a combination method of first-principles and Boltzmann transport theory. The focus of this article is the systematic study of the thermoelectric properties under the effect of a spin-orbit coupling. The highest dimensionless figure of merit (ZT) of Ca2AuAs at optimum carrier concentration are 1.23 at 700 K. Interestingly enough, for n-type Ca2HgPb, the maximum ZT are close to each other from 500 K to 900 K and these values are close to 1, which suggests that semimetallic material can also be used as an excellent candidate for thermoelectric materials. From another viewpoint, at room temperature, the maximum PF for Ca2YZ are greater than 3 mW m-1 K-2, which is very close to that of ∼3 mW m-1 K-2 for Bi2Te3 and ∼4 mW m-1 K-2 for Fe2VAl. However, the room temperature theoretical κ l of Ca2YZ is only about 0.85-1.6 W m-1 K-1, which is comparing to 1.4 W m-1 K-1 for Bi2Te3 and remarkably lower than 28 W m-1 K-1 for Fe2VAl at same temperature. So Ca2YZ should be a new type of promising thermoelectric material at room temperature.

10.
Phys Chem Chem Phys ; 21(27): 14973-14983, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31237601

RESUMEN

SrTiO3-based transition-metal oxide heterostructures with superconducting, ferromagnetic, ferroelectric, and ferroelastic properties exhibit high application potential in the fields of energy storage, energy conversion, and spintronic devices. Meanwhile, high effective (charge)-Seebeck coefficient materials composed of a ferromagnetic layer and SrTiO3 insulator layer have been achieved but we still have blocks to pursuing high spin-Seebeck coefficient materials. Here, we use first-principles calculations combined with spin-resolved Boltzmann transport theory to investigate the spin- and effective-Seebeck coefficients in the LaX(X = Mn and Co)O3/SrTiO3 superlattice. Compared with the LaMnO3/SrTiO3 superlattice, LaCoO3/SrTiO3 with ferromagnetic ordering has high spin polarization, relatively low valence valley degeneracy but high effective mass. Utilizing these characteristics, the maximum spin-Seebeck coefficient of LaMnO3/SrTiO3 is -152 µV K-1 at 450 K along the cross-plane direction, while LaCoO3/SrTiO3 reaches -247 µV K-1 under the same conditions. Interestingly, the spin- and effective-Seebeck coefficients are amazingly consistent with each other below 200 K, which indicates that one spin channel (spin-up or spin-down) dominates the carrier transport, and the other one (spin-down or spin-up) is filtered out. These characteristics are mainly associated with the magnetic MnO2/CoO2 layers with distinct dxy and dz2 orbitals near the Fermi level. Our results clarify the relationship of spin- and effective-Seebeck coefficients and indicate that SrTiO3-based transition metal oxide heterointerfaces are a key candidate for spin caloritronics.

11.
Phys Chem Chem Phys ; 21(23): 12301-12309, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31139776

RESUMEN

Magnetism in two-dimensional (2D) materials, that is, a 2D version of the magnetism of three-dimensional bulk materials, and the associated novel physics have recently been the focus of many spintronics researchers. Here we investigate the manipulation of 2D magnetism at the interfaces of ferromagnetic/ferroelectric hematene/BaTiO3(001) heterostructures (HSs) fabricated via a precisely chosen sequence. By introducing four types of interfaces of 2D hematene and three-dimensional BaTiO3 that induce different oxygen environments, the control of magnetism is directly demonstrated from first-principles. An obvious 2D electron gas originates from the Fe-3d and O-2p hybridization; the electron gas is sensitive to the interfacial atomic displacements. Robust control of both the direction and magnitude of the net magnetization has been realized for an Fe/TiO2 terminated bilayer HS. The electron occupancies of the dxy and dxz orbitals and changes to the Fe-O bond play a key role in determining the magnetism of our systems. Our work not only demonstrates the technique's potential for manipulating magnetism in 2D hematene, but also sheds light on the underlying mechanism and the fundamental properties of hematene HSs.

12.
IUCrJ ; 6(Pt 2): 189-196, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30867916

RESUMEN

Robust control of magnetism is both fundamentally and practically meaningful and highly desirable, although it remains a big challenge. In this work, perovskite oxide superstructures LaFeO3/BaTiO3 (LFO/BTO), LaMnO3/BaTiO3 (LMO/BTO) and LaCrO3/BaTiO3 (LCO/BTO) (001) are designed to facilitate tuning of magnetism by the electric field from ferroelectric polarization, and are systemically investigated via first-principles calculations. The results show that the magnetic ordering, conductivity and exchange interactions can be controlled simultaneously or individually by the reorientation of the ferroelectric polarization of BTO in these designed superstructures. Self-consistent calculations within the generalized gradient approximation plus on-site Coulomb correction did not produce distinct rotations of oxygen octahedra, but there were obvious changes in bond length between oxygen and the cations. These changes cause tilting of the oxygen octahedra and lead to spin, orbital and bond reconstruction at the interface, which is the structural basis responsible for the manipulation. With the G-type antiferromagnetic (G-AFM) ordering unchanged for both ±P cases, a metal-insulator transition can be observed in the LFO/BTO superstructure, which is controlled by the LFO thin film. The LMO/BTO system has A-type antiferromagnetic (A-AFM) ordering with metallic behavior in the +P case, while it shifts to a half-metallic ferromagnetic ordering when the direction of the polarization is switched. LCO/BTO exhibits C-type antiferromagnetic (C-AFM) and G-AFM orders in the +P and -P cases, respectively. The three purpose-designed superstructures with robust intrinsic magnetoelectric coupling are a particularly interesting model system that can provide guidance for the development of this field for future applications.

13.
Phys Chem Chem Phys ; 21(10): 5803-5812, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30805579

RESUMEN

The magneto-Seebeck effect has recently attracted considerable attention because of its novel fundamental physics and future potential application in spintronics. Herein, employing first-principles calculations and the spin-resolved Boltzmann transport theory, we have systematically investigated the electronic structures and spin-related transport properties of Co2FeAl/MgO/Co2FeAl multilayers with parallel (P) and anti-parallel (AP) magnetic alignment. Our results indicate that the sign of tunneling magneto-Seebeck (TMS) value with Co2/O termination is consistent with that of the measured experimental result although its value (-221%) at room temperature is smaller than the experimental one (-95%). The calculated spin-Seebeck coefficients of the Co2/O termination with P and AP states and the FeAl/O termination with the AP state are all larger than other typical Co2MnSi/MgO/Co2MnSi heterostructures. By analyzing the geometries, electronic structures, and magnetic behaviors of two different terminations (Co2/O and FeAl/O terminations), we find that the two terminations in the interface region form anti-bonding and bonding states, reconstructing the energy gap, changing the magnetic moment of O atoms, and improving the spin-polarization (-82%). This phenomenon can be ascribed to the charge transfer and hybridization between Co/Fe 3d and O 2p states, which also results in a bowknot orbital shape of Co atoms with Co2/O termination and an ankle shape of Co atoms with FeAl/O termination far away from the interface. Moreover, there are spin-splitting transmission gaps with the Co2/O-termination around the Fermi level, while the transmission gaps with the FeAl/O-termination are closed and thus show a typical metallic character. Our findings will guide the experimental design of magneto-Seebeck devices for future spintronic applications.

14.
Sci Rep ; 7(1): 10104, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855719

RESUMEN

Electronic band structure is vital in determination the performance of thermoelectric materials. What is the optimum electronic structure for the largest figure of merit? To answer the question, we studied the relationship between the thermoelectric properties and the electronic band structure under the assumption of isotropic elastic scattering, within the context of Chasmar-Stratton theory. The results show that whether the anisotropic band structure and the effective mass of the carrier are beneficial to improving the thermoelectric properties. The scattering mechanism and the shape of the Fermi surface play a decisive role. Regardless of scattering mechanism type, a larger valley degeneracy is always beneficial to thermoelectric materials.

15.
Sci Rep ; 7(1): 2572, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28566696

RESUMEN

Engineering atomic-scale native point defects has become an attractive strategy to improve the performance of thermoelectric materials. Here, we theoretically predict that Ag-Mg antisite defects as shallow acceptors can be more stable than other intrinsic defects under Mg-poor‒Ag/Sb-rich conditions. Under more Mg-rich conditions, Ag vacancy dominates the intrinsic defects. The p-type conduction behavior of experimentally synthesized α-MgAgSb mainly comes from Ag vacancies and Ag antisites (Ag on Mg sites), which act as shallow acceptors. Ag-Mg antisite defects significantly increase the thermoelectric performance of α-MgAgSb by increasing the number of band valleys near the Fermi level. For Li-doped α-MgAgSb, under more Mg-rich conditions, Li will substitute on Ag sites rather than on Mg sites and may achieve high thermoelectric performance. A secondary valence band is revealed in α-MgAgSb with 14 conducting carrier pockets.

16.
Sci Rep ; 6: 33120, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27604826

RESUMEN

The previous experimental work showed that Hf- or Zr-doping has remarkably improved the thermoelectric performance of FeNbSb. Here, the first-principles method was used to explore the possible reason for such phenomenon. The substitution of X (Zr/Hf) atoms at Nb sites increases effective hole-pockets, total density of states near the Fermi level (EF), and hole mobility to largely enhance electrical conductivity. It is mainly due to the shifting the EF to lower energy and the nearest Fe atoms around X atoms supplying more d-states to hybrid with X d-states at the vicinity of the EF. Moreover, we find that the X atoms indirectly affect the charge distribution around Nb atoms via their nearest Fe atoms, resulting in the reduced energy difference in the valence band edge, contributing to enhanced Seebeck coefficients. In addition, the further Bader charge analysis shows that the reason of more holes by Hf-doping than Zr in the experiment is most likely derived from Hf atoms losing less electrons and the stronger hybridization between Hf atoms and their nearest Fe atoms. Furthermore, we predict that Hf/Sn co-doping may be an effective strategy to further optimize the thermoelectric performance of half-Heusler (HH) compounds.

17.
Sci Rep ; 6: 29550, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27406178

RESUMEN

The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization.

18.
Phys Chem Chem Phys ; 17(25): 16536-44, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26051598

RESUMEN

Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 µB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

19.
Phys Chem Chem Phys ; 17(23): 15156-64, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25991513

RESUMEN

Band engineering is one of the effective approaches for designing ideal thermoelectric materials. Introducing an intermediate band in the band gap of semiconducting thermoelectric compounds may largely increase the carrier concentration and improve the electrical conductivity of these compounds. We test this hypothesis by Pb doping in Zintl Ca5In2Sb6. In the current work, we have systematically investigated the electronic structure and thermoelectric performances of substitutional doping with Pb on In sites at a doping level of 5% (0.2 e per cell) for Ca5In2Sb6 by using density functional theory combined with semi-classical Boltzmann theory. It is found that in contrast to Zn doping, Pb doping introduces a partially filled intermediate band in the band gap of Ca5In2Sb6, which originates from the Pb s states by weakly hybridizing with the Sb p states. Such an intermediate band dramatically increases the electrical conductivity of Ca5In2Sb6 and has little detrimental effect on its Seebeck coefficient, which may increase its thermoelectric figure of merit, ZT. Interestingly, a maximum ZT value of 2.46 may be achieved at 900 K for crystalline Pb-doped Ca5In2Sb6 when the carrier concentration is optimized. Therefore, Pb-doped Ca5In2Sb6 may be a promising thermoelectric material.

20.
Phys Chem Chem Phys ; 17(19): 12717-21, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25904338

RESUMEN

We have investigated the structural, electronic, and magnetic properties of A-site-ordered double-perovskite-structured oxides, AA'3B4O12 (A = Na, Ca, and La) with Mn and V at A' and B sites, respectively, using first-principle calculations based on the density functional theory. Our calculation results show that the antiferromagnetic phase is the ground state for all the compounds. By changing the A-site ions from Na(+) to Ca(2+) and then to La(3+), the transfer of charge between Mn and O ions was changed from 1.56 to 1.55 and then to 1.50, and that between the V and O ions changed from 2.01 to 1.95 and then to 1.93, revealing the cause for the unusual site-selective doping effect. Mn 3d electrons dominate the magnetic moment and are localized, with an intense hybridization with O 2p orbitals, which indicates that the magnetic exchange interaction between Mn ions is mediated through O and that the super exchange mechanism will take effect. These materials have a large one-electron bandwidth W, and the ratio of the on-site Coulomb repulsion U to W is less than the critical value (U/W)c, which leads to metallic behavior of AMn3V4O12. This is further evidenced by the large number of free electrons contributed by V at the Fermi surface. These calculations, in combination with the reported experimental data, prove that these double perovskites belong to the rare antiferromagnetic metallic oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...